
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

revision 1.0 

 

 

Prepared for 

DEZSWAP  

 

Prepared by 

ChainLight 

(Theori) 

 

 

 

December 27th, 2022



 

© 2022 Theori. All rights reserved. DEZSWAP |  1 

Table of Contents 
Table of Contents .................................................................................................................... 1 

Executive Summary ................................................................................................................. 2 

Contact Info ............................................................................................................................ 3 

Scope ...................................................................................................................................... 3 

Overview ................................................................................................................................ 4 

Correctness ...................................................................................................................................... 4 

Security ............................................................................................................................................ 4 

Adherence to Precedent Protocols ................................................................................................... 4 

Code Maturity .................................................................................................................................. 4 

Comparison Analysis Against UniswapV2 ................................................................................ 5 

Analysis ............................................................................................................................................ 6 

Findings .................................................................................................................................. 7 

Summary ......................................................................................................................................... 7 

Issue #1: provide_liquidity is susceptible to sandwich attacks .......................................................... 8 

Issue #2: withdraw_liquidity is susceptible to sandwich attacks ..................................................... 11 

Issue #3: Pool can be emptied via a huge swap .............................................................................. 14 

Issue #4: Router should adopt the deadline argument ................................................................... 17 

Issue #5: Commission is rounded down in compute_swap ............................................................. 19 

Issue #6: Insufficient integer overflow handling in provide_liquidity .............................................. 20 

Recommendations ................................................................................................................ 23 

Summary ....................................................................................................................................... 23 

Recommendation #1: Typo in assert_minium_receive .................................................................... 24 

Recommendation #3: Remove dead code ...................................................................................... 25 

Appendix: Test Methodologies .............................................................................................. 26 

Testcases ....................................................................................................................................... 26 

Methods ........................................................................................................................................ 26 

 



 

© 2022 Theori. All rights reserved. DEZSWAP |  2 

Executive Summary 
Starting on October 17th, ChainLight of Theori and DreamAcademy assessed the smart 

contracts for Dezswap code base. We focused on identifying issues that result in a loss of 

funds and any lack of security mitigations which protect the end-users by comparison 

analysis with UniswapV2. 

 

We evaluated the correctness, security, and code maturity of the Dezswap code base. We 

wrote testcases with high code coverage and checked the correctness of the contracts. 

Additionally, we have conducted comparison analysis with UniswapV2. This process helped 

us recognize security issues efficiently by pointing out regions within the code that should 

be looked for especially carefully. 

 

We have discovered a total of 6 security relevant issues, and 3 of them were evaluated to be 

of high impact. However, all of them are exploitable only under limited circumstances, and 

thus we believe the probability of observing an in-the-wild attack is minute. We also made 

recommendations for improving code maturity improvement. 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  3 

Contact Info 
ChainLight, chainlight@theori.io 

https://chainlight.io/ 

ChainLight’s mission is to make the Web3 ecosystem more secure and enable our customers 

and users to grow without fear of security threats. We proactively counteract bad actors that 

steal funds from Web3 projects and protect users by finding vulnerabilities in Web3 

applications quickly and efficiently. 

We offer manual security auditing services from experienced auditors as well as automated 

analysis tools that enable customers to discover and remediate critical security issues ahead 

of time. Customers can integrate our product into their CI infrastructure to continuously 

scan for security vulnerabilities. 

We will develop and employ state-of-the-art program analysis techniques as well as financial 

modeling techniques to ensure security and future solvency of Web3 projects. We seek to 

share our discovery and techniques with the wider open-source community. 

 

DreamAcademy 

https://dream-academy.io/ 

DreamAcademy is an educational program operated by ChainLight of Theori and 

HanWhaLife. Its mission is to nurture Web3 security talents through a well-organized 

curriculum and real-world, hands-on experiences. The whole process was done under the 

guidance of ChainLight, and the following people conducted this assessment; Woosun Song 

(Lead), Woosung Jung, Eunyeong Ahn, and Jihyun Yoo.  

Scope 
We reviewed the smart contracts for DELIGHT LABS’s Dezswap Protocol. 

The code was retrieved on October 17th, 2022, from: 

 

• Dezswap 

o commit 9929b079e3172650cf4b0f9a64732411c8c402f6 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  4 

Overview 
The assessment focused on the following items. 

 

Correctness 
Check that the contracts strictly adhere to the specifications. We do not perform any sort of 

formal verification; we inductively reason the correctness via thorough and extensive tests. 

 

Security 
Devise exploit scenarios that may result in the backend contract / end user / liquidity 

provider to suffer loss. Also, DoS attacks and undesired locking of assets are also put into 

consideration.  

 

Adherence to Precedent Protocols 
Similarities with precedent DEX protocols such as UniswapV2 is a desirable property for 

multiple reasons. First, it eases the entry of users who have experience with those protocols. 

Second, such protocols have been thoroughly audited over a relatively long time, making 

them trustworthy references. 

 

Code Maturity 
We looked for code that can be refactored in terms of: gas consumption optimization / 

syntactic coherence / readability improvement. 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  5 

Comparison Analysis Against UniswapV2 
We chose UniswapV2 as the pivot of evaluation for the following reasons: 

• The official documentation of Dezswap mentions Uniswap as a source of inspiration. 

• UniswapV2 has been audited by multiple parties. 

• Both contracts have the components factory/router/pair and their end-to-end 

functionalities are equivalent. 

• Although there exist next-generation protocols such as UniswapV3 or Curve Finance, 

comparing them with Dezswap failed to yield meaningful conclusions. For example, 

UniswapV3 implements concentrated liquidity, which does not exist at all in 

Dezswap. 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  6 

Analysis 
 

 UniswapV2 Dezswap 

Asset 
Must use wrapped tokens (ex. WETH) 

to exchange on-chain currencies. 

Can handle on-chain currencies directly 

without any sort of wrapping. 

Liquidity 

Provision 

Router has API for liquidity provision 

with slippage mitigations. 
withdraw_liquidity is susceptible to 

sandwich attacks 

Pair has API for liquidity provision, but 

without any slippage mitigations. 

Pair has API for liquidity provision with 

slippage mitigations. 

Pair inherits the IERC20 interface in 

order to act as the liquidity token. 

The pair and its liquidity token are located 

at separate addresses. 

Fees are taken upon liquidity provision. No fees taken upon liquidity provision. 

Swap 

Router has API for swap, with slippage mitigations. Slippage mitigation methods are 

identical: swap transaction(message) reverts if minimum output amount is unfulfilled. 

Optimistic swap: Provides the output 

asset(s) prior to confirming the input 

assets are given. 

Pessimistic swap: Does not provide the 

output asset(s) until it is confirmed that the 

input assets are given. 

Fees are taken from both the assets of 

the pool. 
Fees are taken only from the ask asset. 

Liquidity 

Withdrawal 

Router has API for liquidity withdrawal, 

with slippage mitigations. 
Router has no API for liquidity withdrawal. 

A certain amount 

(MINIMUM_LIQUIDITY) of liquidity 

tokens are permanently locked. 

It is possible for LPs to remove all liquidity. 

Fees are taken upon liquidity 

withdrawal. 
No fees taken upon liquidity withdrawal. 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  7 

Findings 
These are the potential issues that may have correctness and/or security impacts. 

 

Summary 
 

# ID Title Severity 

1 THE-DEZSWAP-

001 

provide_liquidity is susceptible to sandwich attacks Fixed (Critical) 

2 THE-DEZSWAP-

002 

withdraw_liquidity is susceptible to sandwich 

attacks 

Fixed (High) 

3 THE-DEZSWAP-

003 

Pool size can become zero via a huge swap Fixed (High) 

4 THE-DEZSWAP-

004 

Router should adopt the deadline argument Fixed (Medium) 

5 THE-DEZSWAP-

005 

Commission is rounded down in compute_swap Fixed (Low) 

6 THE-DEZSWAP-

006 

Insufficient integer overflow handling in 

provide_liquidity 

Fixed 

(Informational) 

 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  8 

Issue #1: provide_liquidity is susceptible to sandwich attacks 
 

ID Summary Severity 

THE-DEZSWAP-001 

The provide_liquidity function lacks a proper 

slippage tolerance mitigation, exposing it to 

sandwich attacks. 

Fixed 

(Critical) 

 

Root Cause 

Slippage loss mitigation in provide_liquidity is necessary because an end-user will provide 

two assets according to the current pool ratio, which can differ from the pool ratio at the 

time of transaction execution. This difference results in the overprovision of one of the 

assets. 

 

In UniswapV2, both the pair and the router implement APIs for liquidity provision. The API 

in the pair is mint(), and has no slippage mitigations. On the other hand, Router02 provides 

a safe API for providing liquidity, called addLiquidity(), which mitigates slippage loss by 

calculating the amounts of asset0 and asset1 that maximizes the returned LP token amount 

and transferring only those amounts. This flow effectively eliminates all loss due to slippage. 

 

Unlike UniswapV2’s implementation, Dezswap’s pair has slippage loss mitigations. Dezswap 

mitigates slippage loss by reverting the transaction if the pool ratio and the deposit ratio 

differs more than a certain threshold. The threshold is calculated by the formula 1 – 

slippage_tolerance, where slippage_tolerance is an optional argument provided by the 

contract caller. 

 

However, this implementation is problematic because liquidity provision is not a process 

where slippage loss is inevitable, as the implementation of UniswapV2’s addLiquidity() API 

is completely loss-free. Dezswap forces users to tolerate some amount of loss even if it is 

completely avoidable. If we assume an attacker conspiring with a block validator, it even 

becomes possible to maximize other users’ loss continuously and profit from this loss. 

 



 

© 2022 Theori. All rights reserved. DEZSWAP |  9 

Threat Model and Exploit Scenario 

In order for the attack to take place, the following conditions must be satisfied: First, the 

attacker must be a block validator or a third-party colluding with a block validator. The 

perks of being a block validator is that it is possible to reorder transactions within a single 

block. Second, the attacker must possess capital that can drastically change the exchange 

rate of the pair.  

 

We present a toy scenario that describes such an attack. In this scenario, three parties are 

involved: an innocent LP, a malicious LP, and a malicious block validator that conspires with 

the malicious LP. The pair holds two assets, token A and token B, whose pool sizes have a 

ratio of 1:1. The attack begins as the innocent LP issues a transaction containing a 

provide_liquidity message. Because the innocent LP sees a pool ratio of 1:1, it will 

deposit the same amount of token A and token B to the pair. 

 

 
  



 

© 2022 Theori. All rights reserved. DEZSWAP |  10 

(1) The innocent LP sends a provide_liquidity transaction that deposits 10!  token A and 

10! token B. For simplicity, we assumed that slippage_tolerance is set to None. As the 

malicious block validator receives the innocent LP’s transaction, it constructs 4 additional 

transactions and places them in an appropriate order within the block so that the following 

sequence of events take place. 

(2) The malicious user deposits 10!  token A and 10! token B and becomes a LP. It receives  

10! LP tokens, which can be redeemed to 10!  token A and 10! token B.  

(3) Through the second transaction, the malicious LP swaps a large amount of token A into 

token B. This results in the pool’s 1:1 balance to shift to approximately 10:1. 

(4) The innocent LP’s provide_liquidity transaction is executed. The current pool ratio is 

approximately 10:1, which results in the overprovision of Token B. 

(5) Afterwards, the malicious LP restores the pool ratio by swapping large amounts of Token 

B to Token A.  

(6) The malicious LP removes liquidity and redeems Token A and Token B. It receives more 

tokens than 10!, because of the overprovision in 3. Thus, it is possible to say that the 

malicious LP took advantage of the innocent LP. 

 

Fixes and Recommendations 

(1) Create a safe API for liquidity provision in the router. The slippage loss mitigation 

method must be identical to UniswapV2’s router: only transferring assets that contribute to 

according to the pool ratio, and return the rest. 

(2) Remove all safety checks (The slippage_tolerance argument and all code dependent on 

it) from Dezswap pair. This is done to reduce the gap between Dezswap pair and 

UniswapV2’s pair as well as reducing gas consumption caused by redundant checks when 

using the router. 

 

Fix 

The issue was fixed in commit https://github.com/dezswap/dezswap-

contracts/commit/82131ac4acc3a48d159f74502280d38db71ae733 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  11 

Issue #2: withdraw_liquidity is susceptible to sandwich attacks 
 

ID Summary Severity 

THE-DEZSWAP-002 

The withdraw_liquidity function lacks the proper 

slippage tolerance mitigation, exposing it to 

sandwich attacks. The market conditions could 

limit the impact. 

Fixed 

(High) 

 

Root Cause 

UniswapV2 Router02’s removeLiquidity API takes the amountMin argument, which is 

compared with the yields of each assets redeemed and reverts the transaction if amountMin 

is not fulfilled.  

 

In Dezswap, the withdraw_liquidity API exists for removing liquidity. However, there are 

two differences with UniswapV2’s API: First, the API for withdrawing liquidity only exists in 

the pair, and the router does not provide an API for withdrawing liquidity. Second, there is 

no argument analogous to amountMin and no slippage loss mitigations are performed in 

withdraw_liquidity. The second poses a nontrivial security implication. 

 

If an innocent LP tries to withdraw liquidity under inclement circumstances, he/she may face 

loss. Such circumstances are described in the next section, Threat Model and Exploit 

Scenario 

 

Threat Model and Exploit Scenario 

The condition for this attack to be successful is equivalent to the conditions described in 

5.2.2. However, an additional condition must also be present in this case: The difference in 

value between the two tokens in the pair must be amplified within a short period of time.  

 

The setting for our scenario is as follows: The pair consists of pools of Token A and Token B. 

Initially, Token A and Token B have the same value: both tokens can be bought with 1$ on 

commodity exchanges. The following sequence of events lead to an attacker making profit 

from an innocent user’s loss: 



 

© 2022 Theori. All rights reserved. DEZSWAP |  12 

 

 
 

(1) User1 is a malicious user colluding with a block validator. User1 provides liquidity to the 

pair by depositing 10! Token A and 10! Token B, and gets 10! LP token in return.  

(2) The victim also provides liquidity to the pair by depositing 10! Token A, 10! Token B, 

and receives 10! LP token in return. Currently, the same amount of Token A and Token B 

exists in the pool. 

(3) Due to external influences, the price of Token A drops to 0.5$ and the price of Token B 

increases to 1.5$. 

(4) Due to this price fluctuation, liquidity providers will be motivated to withdraw liquidity. 

Because the victim is currently a liquidity provider, he/she will also attempt to withdraw 

liquidity as soon as possible, and thus issues a transaction holding the withdraw_liquidity 

message. The victim expects to redeem the same amount of Token A and Token B because 

at the point of issuing, the amount of both assets held by the pool are same. 

(5) The malicious validator receives victim’s transaction, and instead of executing it right 

away, it reorders the transaction to make profit. First, a swap transaction that swaps a large 

amount of Token A into Token B. This results in the pool having more Token A than Token 

B. Afterwards, the victim’s withdraw liquidity transaction is executed. Then, user1 restores the 

balance within the pool and redeems its LP tokens. 



 

© 2022 Theori. All rights reserved. DEZSWAP |  13 

(5) Until (2), the total asset value held by user1 and victim were equal, because they both 

held the same amount of LP tokens. However, user1 received more Token B than Token A, 

which resulted in a loss for the victim and a win for user1. We can see this as a form of 

‘forced’ impermanent loss for the victim. 

 

Fixes and Recommendations 

(1) There is no API for liquidity withdrawal on Dezswap’s router. To reduce the gap between 

UniswapV2 and Dezswap, we recommend implementing one. 

(2) As in UniswapV2 Router02’s removeLiquidity API, slippage loss mitigations must be 

implemented. We recommend implementing slippage loss mitigation in the same fashion. 

(Taking the amountMin argument) 

 

Fix 

The issue was fixed in commit https://github.com/dezswap/dezswap-

contracts/commit/99a92a17b88e13e9f63afcb764d2d1870091e354 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  14 

Issue #3: Pool can be emptied via a huge swap 
 

ID Summary Severity 

THE-DEZSWAP-003 
Truncated division breaks the CPMM invariant 

leading to the free swap. 

Fixed 

(High) 

 

Root Cause  

During swap, the value return_amount is computed prior to performing actual asset 

movement. return_amount is the amount of ask asset that is given to the user excluding 

commission. If return_amount is equal to the ask pool size, the ask pool size becomes 0 

which breaks the CPMM invariant. Theoretically, it is impossible to make the ask pool size to 

become 0 as x and y cannot become 0 in the equation xy = k > 0. However, the following 

code makes it is possible to make x or y become 0 as integer divisions result in truncations. 

 

    // offer => ask 
    // ask_amount = (ask_pool - cp / (offer_pool + offer_amount)) * (1 - 
commission_rate) 
    let cp: Uint256 = offer_pool * ask_pool; 
    let return_amount: Uint256 = (Decimal256::from_uint256(ask_pool) 
        - Decimal256::from_ratio(cp, offer_pool + offer_amount)) 
        * Uint256::one(); 

 

It substitutes from the ask_pool the amount of ask assets that should remain after the swap. 

In the world of real numbers, the second operand of the substitution can never become 

zero, as division of two positive real numbers can never become zero. However, in the world 

of Uint256, as the remainder of division is discarded, it is possible for the second operand 

to become zero. 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  15 

Threat Model and Exploit Scenario 

In order to execute a swap that causes the return_amount to become 0, two conditions 

must be satisfied: first, offer_pool + offer_amount must be substantially larger than 

offer_pool * ask_pool. Second, return_amount must be small so that computed 

commission is rounded down to zero. It is nearly impossible to satisfy both conditions at 

once. Thus, the attack must be performed in two stages. The first stage requires shrinking 

the ask pool size to a small but nonzero value. The second stage performs a small swap that 

empties the ask pool. 

 

The feasibility of the first stage depends on the initial pool size. The amount of offer asset 

required for this stage is linearly proportional to the size of the ask pool. Thus, in most 

cases the attack will be infeasible as it requires a substantial amount of capital. However, 

under vulnerable settings such as a small liquidity pool or a large difference between asset 

decimals, there exists a possibility. 

 

The impact of this attack is that it renders the target pool dysfunctional. Once a pool size 

becomes 0, provide_liquidity and swap functionalities are inaccessible. In this situation, the 

owner of the pair can make one of two choices, each of which results in the same amount 

of loss. 

 

The first choice is to leave the pair dysfunctional and do nothing.  Then, it becomes possible 

for an attacker to drain all funds from the pair. It can be done by first pushing a small 

amount of funds to make the pool nonzero again, and make swaps in the reverse direction. 

For example, let’s assume that a pair has 0 Token A and 1000 Token B. Then, an attacker 

sends 1 Token A to the pair to make it have 1 Token A and 1000 Token B. Afterwards, the 

attacker swaps 1 Token A and gets 500 Token B in return, which is approximately half of the 

pair’s TVL. Repeating this process will drain the pair. 

 

The second choice is to push an adequate number of assets to restore the balance between 

the pools. However, this results in an identical cost as in the first case. Let’s assume the 

same situation where a pair has 0 Token A and 1000 Token B, and the value ratio of Token 

A and Token B in another DEX is 1:1. Then, to restore balance the pair owner must push 

1000 Token A, which has the same value as 1000 Token B. In other words, to recover a pair 



 

© 2022 Theori. All rights reserved. DEZSWAP |  16 

from such conditions, it requires funds commensurate to the current TVL of the pair. Thus, 

restoring the pair is as costly as abandoning it. 

Fixes and Recommendations 

We recommend modifying the method of computing return_amount in compute_swap. 

Although the fundamental equation is equivalent with the original code, its integer behavior 

is different. 

 

     // offer => ask 
     // ask_amount = (ask_pool - cp / (offer_pool + offer_amount)) * (1 - 
commission_rate) 
     -    let cp: Uint256 = offer_pool * ask_pool; 
     -    let return_amount: Uint256 = (Decimal256::from_uint256(ask_pool) 
     -        - Decimal256::from_ratio(cp, offer_pool + offer_amount)) 
     -        * Uint256::one(); 
     +    let return_amount: Uint256 = (ask_pool * offer_amount) / (offer_pool + 
offer_amount); 

 

In the original method, it is possible for the second operand of substitution to become zero 

which results in a ‘round-up’ like behavior for the entire expression. However, for the 

proposed method, return_amount can never be ask_amount unless offer_pool is zero due 

to a ‘round-down’ like behavior for the entire expression. In other words, the equation is 

hardened by reordering the necessary computations. 

 

Fix 

The issue was fixed in commit https://github.com/dezswap/dezswap-

contracts/pull/8/commits/219243e1c1458dbfc4e17cfcfbee970ec4bc7f28 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  17 

Issue #4: Router should adopt the deadline argument 
 

ID Summary Severity 

THE-DEZSWAP-004 

Lack of deadline parameter allows the block 

producer to arbitrarily delay the victim user’s 

transaction. 

Fixed (Medium) 

 

Root Cause 

If the execution of an end-user’s transaction is delayed for a long period of time, it can 

result in undesirable effects such as loss of funds. Thus, UniswapV2’s router prevents a 

transaction from being delayed to a certain extent by taking an argument called deadline. 

In contrast, Dezswap does not take any safety measures similar to this. 

 

Threat Model and Exploit Scenario 

An example of a delayed contract resulting in a loss of funds is as follows. Due to external 

influences, the values of assets within a pair can fluctuate. If a liquidity provider’s request to 

withdraw liquidity is delayed, the pair may transition into a state that is not in favor of the 

liquidity provider. Such delays may be amplified by malicious block validators. Such block 

validators will try to convert the loss of innocent users into their profit, which is discussed 

extensively in Issue#2 and Issue#3. 

 

Fixes and Recommendations 

A fix to this issue would be to implement the deadline argument and relevant checks. This 

would also result in reducing the gap between UniswapV2 and Dezswap. An alternative 

solution would be to use the timeout block height field in the transaction. This method is 

superior when compared to the former in terms of gas consumption. However, it has two 

downsides: First, the timeout block height is a per-transaction field. Thus, it would be 

insufficient to a user who wishes to include multiple messages with different timeouts within 

a single transaction. Second, the concept of block numbers is less intuitive than time to an 

end-user who is not familiar of blockchain internals. 



 

© 2022 Theori. All rights reserved. DEZSWAP |  18 

Fix 

The issue was fixed in commit https://github.com/dezswap/dezswap-

contracts/commit/6e9eaf3f2e83b29620617d14c40be0130b87784b 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  19 

Issue #5: Commission is rounded down in compute_swap 
 

ID Summary Severity 

THE-DEZSWAP-005 
Truncated division in swap commission calculation 

leads to minuscule loss for the liquidity providers. 
Fixed (Low) 

 

Root Cause 

To overcome the absence floating point data types in WASM, the contract uses fixed point 

decimals. COMMISION_RATE is fixed to 0.3% in Dezswap pair, and thus when calculating 

commission_amount in the compute_swap function, return_amount is multiplied by 3 and 

1000 to replace the decimal operation. If the expression return_amount * 3 has a nonzero 

remainder (when divided by 1000), truncation occurs, resulting in a small loss of value less 

than 1 for the pair. This results in a small profit for the swap user. 

 

Threat Model and Exploit Scenario 

The amount of loss accrued per transaction is timid and is guaranteed to be less than 1. 

Thus, we have evaluated the severity of this issue as low. One may claim that attackers can 

elide commission for the entire swap by splitting the entire swap amount to multiple small 

amounts. However, although this causes a loss to the pair, it would not benefit the attacker 

due to increased gas price, making it an unrealistic exploit scenario.  

 

Fixes and Recommendations 

When computing commission_amount, it must be increased by 1 if a nonzero remainder is 

left during division. This is equivalent to rounding-up the commission amount, whereas the 

current implementation computes in a round-down fashion. 

Fix 

The issue was fixed in commit https://github.com/dezswap/dezswap-

contracts/commit/fd5574d65542fcc9c2b3360ac92e7f8bc88c81d4 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  20 

Issue #6: Insufficient integer overflow handling in 

provide_liquidity 
 

ID Summary Severity 

THE-DEZSWAP-006 
The provide_liquidity function deos not 

handle the integer overflow properly. 
Fixed (Informational) 

 

Root Cause 

In Dezswap pair’s provide_liquidity API, during the very first liquidity provision, an integer 

overflow can occur if the product of the two assets’ amounts exceeds 2"!# − 1. 

 

let share = if total_share == Uint128::zero() { 
    // Initial share = collateral amount 
    Uint128::from((deposits[0].u128() * deposits[1].u128()).integer_sqrt()) 
    // integer over flow 
} 

 

Threat Model and Exploit Scenario 

This problem is difficult to consider as a security issue because an asset flow with such 

magnitudes is unrealistic. Also, a liquidity provider can avoid the panic by splitting the assets 

into smaller units that does not result in overflows. However, we recommend fixing this 

issue nonetheless in consideration of programmatic correctness and exceptional situations 

(such as the case where the amount of tokens minted is abnormally high due to price 

inflations). 

 

Fixes and Recommendations 

fn compute_swap( 
    offer_pool: Uint128, 
    ask_pool: Uint128, 
    offer_amount: Uint128, 
) -> (Uint128, Uint128, Uint128) { 
    let offer_pool: Uint256 = Uint256::from(offer_pool); 
    let ask_pool: Uint256 = ask_pool.into(); 
    let offer_amount: Uint256 = offer_amount.into(); 
 



 

© 2022 Theori. All rights reserved. DEZSWAP |  21 

    let commission_rate = Decimal256::from_str(COMMISSION_RATE).unwrap(); 
 
    let cp: Uint256 = offer_pool * ask_pool; 
} 

 

In the compute_swap function of the Dezswap pair, integer overflow handling is implemented 

adequately. In order to prevent an integer overflow from occurring in the expression 

offer_pool * ask_pool, the operands are casted to Uint256 prior to calculation. 

 

It is possible to prevent integer overflows in the same manner. However, because 

integer_sqrt is only implemented for primitive integer types, it must be newly 

implemented for Uint256. The following is an example of a working implementation. 

However, safety validation and gas cost optimization are not performed, so it is 

recommended to exercise extreme caution upon using it. 

 

fn integer_sqrt_for_uint256(num: Uint256) -> Uint128 { 
    use std::ops::Shl; 
 
    // Compute bit, the largest power of 4 <= n 
    let max_shift: u32 = 255; 
    let one: Uint256 = Uint128::new(1).into(); 
    let two: Uint256 = Uint128::new(2).into(); 
 
    // Compute leadning_zeros by first computing leading zeros of top 128 bits and 
then the low 128 bits 
    let mut leading_zeros; 
    let modulus: Uint256 = two.pow(128); 
    let top: Uint128 = num.checked_div(modulus).unwrap().try_into().unwrap(); 
    let low: Uint128 = num.checked_rem(modulus).unwrap().try_into().unwrap(); 
    leading_zeros = top.u128().leading_zeros(); 
    if leading_zeros == 128 { 
        leading_zeros += low.u128().leading_zeros(); 
    } 
    let shift: u32 = (max_shift - leading_zeros) & !1; 
 
    let mut bit = one.shl(shift); 
 
    // Algorithm based on the implementation in: 
    // 
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_
(base_2) 



 

© 2022 Theori. All rights reserved. DEZSWAP |  22 

    // Note that result/bit are logically unsigned (even if T is signed). 
    let mut n = num; 
    let mut result = Uint256::zero(); 
    while bit != Uint256::zero() { 
        if n >= (result + bit) { 
            n = n - (result + bit); 
            result = result.shr(1) + bit; 
        } else { 
            result = result.shr(1); 
        } 
        bit = bit.shr(2); 
    } 
    let result: Uint128 = result.try_into().unwrap(); 
    result 
} 

 

Fix 

The issue was fixed in commit https://github.com/dezswap/dezswap-

contracts/commit/ad54614d219fafdc5c74a019a46bd4c4ef70d545 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  23 

Recommendations 
These are the recommendations to improve the code maturity for better readability, 

optimization, and security. They do not impose any immediate security impacts. 

 

Summary 
 

# Title Type Importance  

1 Typo in assert_minium_receive code 

maturity 

Minor 

 

2 Redundant usage of Decimal::from_str in compute_swap optimization Minor 

 

3 Remove dead code optimization Minor 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  24 

Recommendation #1: Typo in assert_minium_receive 
The assert_minium_receive function implemented in the router takes minium_receive as its 

fourth argument. 

 
We speculate that this naming is a typo, because in the execute_swap_operations function 

and ExecuteMsg::AssertMinimumReceive enum variant, a variable which serves the same 

purpose is named minimum_receive. We recommend fixing this typo for code maturity 

maintenance. 

Fix 

The issue was fixed in commit https://github.com/dezswap/dezswap-

contracts/commit/b7ccbd4860d92794a9952fa85c9ef7925a0ab7f0 

 

Recommendation #2: Redundant usage of Decimal::from_str in 

compute_swap 
The pair has a fixed commission rate, which is stored as a constant string. Thus, when it is 

converted to a decimal data type, the Decimal256::from_str API is called for every time. 

Because string processing is an avoidable process when constructing numbers, we 

recommend refraining from using from_str. 

 

const COMMISSION_RATE: &str = "0.003"; 
let commission_rate = Decimal256::from_str(COMMISSION_RATE)?; 

 

For example, using the from_atomics API to construct the decimal avoids string processing, 
which is better in terms of gas consumption. 
 

let commission_rate = Decimal256::from_atomics(3u64, 3).unwrap(); 

 

Fix 

The issue was fixed in commit https://github.com/dezswap/dezswap-

contracts/commit/eb2d108a43455e5440fa3e125fc355a15f73e155 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  25 

Recommendation #3: Remove dead code 
Dead code increases contract code size, a factor that increases deployment cost. The dead 

code we found is a total of three. One of them is in the pair, amount_of is never called and 

should be subject to removal. Note that this example was not detected by the compiler or 

code analyzers (ex. Clippy) because it is declared as a public function. Thus, such instances 

must be manually found. 

 

// pair.rs 
pub fn amount_of(coins: &[Coin], denom: String) -> Uint128 { 
    match coins.iter().find(|x| x.denom == denom) { 
        Some(coin) => coin.amount, 
        None => Uint128::zero(), 
    } 
} 

 

// pair error.rs 
#[error("Too small offer amount")] 
TooSmallOfferAmount {}, 

 

// pair error.rs 
#[error("Too small offer amount")] 
TooSmallOfferAmount {}, 

 
 

Fix 

The issue was fixed in commit https://github.com/dezswap/dezswap-

contracts/commit/784e59d5a5d31bcdb0a74432d0eddd652339af66 

  



 

© 2022 Theori. All rights reserved. DEZSWAP |  26 

Appendix: Test Methodologies 

Testcases 
We made a collection of all the test code as well as code coverage reports. Because the 

repository contains proof-of-concepts for security issues, we have made it private for now. 

-    https://github.com/dream-academy/dezswap-tc 

Methods 
The testcases in the repository above mostly consists of python code, which may raise an 

eyebrow for cosmwasm developers. One previous method for testing a wasm smart contract 

is by writing unit-tests, which are compiled to x86. However, we felt that this method of 

writing tests is both insufficient and inefficient. It is insufficient because unit-tests cannot 

capture all of the semantics of the cosmwasm architecture. It is inefficient because it 

increases the LoC of test code due to calls to mock_* functions and requires an extensive 

knowledge of the cosmwasm semantics to write tests in the first place.  

 

An alternative testing method is to deploy contracts on a testnet. Testing on a testnet 

captures more semantics than unit-tests and does handles the cosmwasm semantics on 

behalf of the caller, but has its downsides nonetheless. First, it is not quick enough due to 

block creation time. Second, testcases are hard to reproduce, as reproduction requires re-

starting from contract instantiation. Third, it is impossible to freely modify parameters such 

as a user’s funds, block number, or a value within a contract’s storage.  

 

Thus, we created a new testing method that solves all of these problems. This method has 

three major novelties: First, contract storage is constructed based on its on-chain current 

state, which is fetched via RPC(or LCD) queries. Second, the stack-like submessage passing 

semantics is implemented so that invocation of other contracts are done automatically. 

Third, it is possible to freely modify states and tx metadata such as bank balances, storage, 

and message info. Due to these three characteristics, it is possible to create a lightweight, 

local ‘fork’ of an existing chain and execute/instantiate contracts on top of it.  

 

It also has Python bindings which enables uses to write tests in Python. 

 

 


